

Keith Johnson, Preservation Architect Stanford University keithj@stanford.edu

PERSPECTIVE

- Provisioning centralized long-term digital preservation services.
- Economic Approach
- Effectiveness = Real-World Results
- Risk Modeling Methodology

WHAT CONSTITUTES EFFECTIVE DIGITAL PRESERVATION?

- ...when Digital Information Resources are *used* in the future.
- 1. When a Resource—that *could* be valuable in a future activity—*is* valuable in that activity.
- 2. When previous stewardship decisions compromise its future Value the *least*.
- (2a. When many use contexts are facilitated.)

CONCEPTUAL MODEL

DEPOSIT RISKS

Producer fails to deposit

Deposit does not prove Useful (especially to Producer)

BIT-PRESERVATION RISKS

Corruption

Systemic Doubt

Deposit does not prove Useful (Not "complete", expensive to start working with.)

OVERARCHING RISKS

Failure to Scale

...predictably, linearly, in both directions

Failure to adapt to current resources

DISTURBING PHENOMENON

Agility in access—generally valuable

Immutability (aka corruption detection) in Preservation —generally valuable

Agility—drives up Preservation Costs

Immutability—drives up Access Costs

APPROACH

Strongly separate
"Preservation Access" systems
from "Use Access" systems

Focus on "Data at Rest"

Choose Native Filesystems as primary communication "channel" for Data

Preservation through audit of de-correlated copies

Buffer multiple transactions into streams

Encapsulate and Summarize whenever possible

ARCHITECTURE STACK FOR CLIENT

- •Application
 - Transaction interface
 - Automatic packaging
- Filesystem
 - Primary data channel
- •Serialized form
 - SPOORE

SPOORE CONCEPT

(Self-describing Portable Objects Optimized for Reuse and Exchange)

- •Self-describing bit-stream, so highly portable
- Offers flexibility in granularity, supports summarization

FILESYSTEM METAPHOR

- Logical Hierarchy with distributed ownership
- •All references consist of Path and Timestamp
- •All transactions are saved with Timestamp

STORAGE MODEL

- •Based largely on LOCKSS and ACE
- •Transaction-based (not filebased)
- Storage Level Services
- Storage Services
- Time-based Aggregates
 - Summarization Checksums

THANK YOU

Keith Johnson Stanford University keithj@stanford.edu

NOTABLE QUOTES

"Preservation is an outcome." -Clay Shirky

"It's all Triage." -Clay Shirky and Cliff Lynch

"Risk management is our compass"