

IBM Haifa Research Lab

Long Term Digital Preservation

November 2008

Michael Factor

contact: factor@il.ibm.com

http://www.haifa.il.ibm.com/projects/storage/ltdp/index.shtml

© 2008 IBM Corporation

The Domesday Book: 1086 vs. 1986

The original Domesday Book

A survey of England completed in 1086 under order of William the Conqueror

In 2002, atter 16 years, the BBC vation: Physical Media: Royal Treasury, Chapter House, rarely used Domesday Protothat: Bound Parchment was almost al Preservation Logical Format (Representation): Latin (with some vernacular) obsolete _ Context: Anglo-Saxon Chronicle

Provenance: Physically tracked

- BBAd2003eadayBBOjectmesday Project What Went Wrong?
 - Aaseltijsnedia entition of the Dynamesday book published on the 900th annixersary At the time CD-ROMs had limited capacity and no standards
 - BBC^HMicrocolfiputer Vs. 1890 Compatible PC
 - It was developed using proprietary technologies. IBM Compatible's were only used in business at the time.
- Bit Preservation
 Software Written In BCPL
 Used an adapted laserdiscs in the LaserVision Read Only Memory
 Time Of kange age Ware Master hidrog rapprescursor of C

 - Imagnessrstaried Reseinglationame analogue overlaid by computer
 - JPE Stynesweither in 1992
- Images stored as single frame analogue overlaid by computer The BBC Domesday Project was ahead of its time

What is Long Term Digital Preservation?

- Long Term Digital Preservation (LTDP) is a means of keeping digital information such that the same information can be used at some point in the future in spite of obsolescence of everything: hardware, software, processes, format, people, etc.
- Bit Preservation addresses obsolescence of hardware
 - As the term is used, *digital archiving*, at best, provides bit preservation and makes implicit assumptions on the availability of compatible software, formats, processes
- Information or logical preservation addresses obsolescence of everything else

Physical vs. Digital Preservation

	Physical	Digital
Lifetime of the medium	> Centuries	< Decades
Lifetime of the physical form factor	> Millennium	< Decades
Ability to extract the object from the medium	> Millennium	< Decades
Ability to read the object	> Centuries	< Decades
Understanding the object's context	< Decades	< Decades
Knowing the object's provenance	< Decades	< Decades
Ensuring the integrity of the object	Hard	Very Hard
Preserving the preservation system	Not Relevant	Very Hard

- Printing to ensure future usability is not an option
- Accidental physical preservation is possible
 - Accidental digital preservation is not possible

Is Long Term Digital Preservation Needed?

Open Archival Information System (OAIS)

- ISO standard reference model (ISO:14721:2002)
- Provide fundamental ideas, concepts and a reference model for long-term archives
- Incorporate emulation, migration, descriptive via encapsulation
- Focused on logical preservation

Preservation Approaches

Approach	Description	Pros	Cons
Museum	Content and rendering devices are preserved in their original state and maintained operational	No loss of information	Expensive; time bounded; not scalable
Emulation	Adapt the rendering device by emulating it to up-to date software and computers	Problem reduced to preserving the emulation platform; cost proportional to number of formats.	Upfront investment; Only for data coupled with software; Does not allow new interpretations.
Migration	Migrate to newer formats	Less investment when data ingested. Allows new uses.	May introduce noise; cost proportional to data size; continuous cost
Descriptive	Add metadata to fully describe representation of data, allowing writing code in the future to process format	No loss of info; Minimal assumptions on future. Delay's cost until needed	Doesn't support proprietary formats. May have future high cost
Encapsulation	Group together the data and related metadata (including instructions to enable future interpretation)	Most flexible; consistent with everything but museum approach; OAIS compliant	Doesn't tell you what to do

Preservation Objects

Registries and Tools

http://www.casparpreserves.eu/ -- http://www.haifa.il.ibm.com/projects/storage/datastores/caspar.html

Preservation Objects

Registries and Tools

CASPAR and Preservation DataStores

- CASPAR: Cultural, Artistic and Scientific knowledge for Preservation, Access and Retrieval
 - 8.8M Euro, 3.5 year, EU Projec
 - IBM is the largest IT partner
 - http://www.casparpreserves.eu/
- Demonstrate validity of OAIS framework with heterogeneous data
- IBM is responsible for the storage infrastructure
 - Developed Preservation DataStores
- IBM's Experience in CASPAR
 - Learn about long term digital preservation
 - Gain access to a user community and data
 - Evaluate technology for preservation
 - Apply concepts to IBM technology

Preservation Data Store (PDS

Backup

References

Publications:

- Preservation DataStores: New Storage Paradigm for Preservation Environments"
 - IBM Journal of Research and Development on storage Technologies and Systems, Volume 52, Number 4/5, 2008
- "Preservation DataStores: Architecture for Preservation Aware Storage"
 - IEEE Conference on Mass Storage Systems and Technologies (MSST), September 2007, San Diego, USA.
- "The Need for Preservation Aware Storage A Position Paper".
 - ACM SIGOPS Operating Systems Review, Special Issue on File and Storage Systems, Volume 41, Issue 1 (Jan 2007), pp 19-23.
- "Towards OAIS-Based Preservation Aware Storage A White Paper".
 - http://www.haifa.il.ibm.com/projects/storage/datastores/public.html

Patents:

- IL8-2008-0206: A Method for Enrichment of Preservation Objects in a Preservation System under evaluation
- IL8-2008-0205: A Method for Automatically Creating Collections of Preservation Objects in a Preservation System – under evaluation
- IL8-2008-0044: A Method for Preservation Aware Fixity Computations rated file
- US7356480: Method of data transformation via efficient path discovery using a digraph issued